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1. Plan 

1.  Complementarity and variational inequalities.  
2.  Differential Variational Inequalities (DVI) and 

nonsmooth dynamics.  
3.  Time-stepping methods for nonsmooth dynamics. 
4.  Iterative (~ projected Gauss-Seidel) methods for the 

subproblem.   
5.  Numerical Examples.  
6.  Some GPU calculation examples.  



1.Complementarity and Variational 
Inequalities.  



Complementarity-Complementary Variables. 

 Example : Normal force – normal separation 



Most common algebraic format: linear 
complementarity problems, LCP 



Variational Inequalities and connection to 
complementarity.  



2. Nonsmooth contact dynamics-Differential 
Variational Inequalities (DVI) 



Nonsmooth contact dynamics—what is it? 
 Differential problem with variational inequality constraints  – 

DVI 

Friction Model 

Newton Equations Non-Penetration Constraints 

Generalized Velocities 

 Truly, a Differential Problem with Equilibrium (parametric VI) 
Constraints AND complementarity constraints 



Differential Variational Inequalities– why do 
it?  

 Contact Dynamics. 
–  Rigid-Bodies: Differential Operator is ODE. 
–  Deformable Bodies: Differential Operator is PDE. 
–  Granular Flow, Masonry Stability, Rock Dynamics… 

 Finance: Option Pricing-- American Options. PDE-
based. 

 Dynamics of multicristalline materials: evolution of the 
boundary between phases. 

 Porous Media Flow.  
 See Luo, Pang et al, and Kinderlehrer and Stampacchia 

Monographs.. 



Or, just for fun .... Physics-based VR 

  This “fun” is serious business in the US,  
 One of the main drivers of new architectures (GPU, Ageia); huge 

user community 

Note: real-time simulation 

  Implication: 
Speed and 
Stability more 
weight than of 
accuracy.  



Question 1: Should we do smoothing? 

  Recall, DVI (for C=R+) 

  Smoothing  

  Followed  by forward Euler. 
Easy to implement!! 

  Compare with the complexity 
of time-stepping 

  But does it give good results? 



Applying ADAMS to granular flow 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 



ADAMS versus ChronoEngine 

Conclusion 1: Often, time stepping is more promising,  



Recall: Nonsmooth contact dynamics 
 Differential problem with equilibrium constraints – DPEC. 

Friction Model 



Options and challenges for methods with no 
smoothing 

  Piecewise DAE (Haug, 86) 
–  Plus : Uses well understood DAE technology 
–  Minus: The density of switches, switching consistency, and 

Painleve are problems. 
  Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang & 

Trinkle, 1995) 
–  Plus: No consistency problem.  
–  Minus: Density of switches and Painleve. 

  Velocity-impulse time-stepping. (Moreau, 196*, 198*,199*, Stewart 
and Trinkle, 1996, Anitescu & Potra, 1997) 
–  Plus: No consistency, or Painleve. Some have fixed time 

stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06). 
–  Minus: Nonzero restitution coefficient is tough—but its value is 

disputable in any case 



3. Time-stepping methods 



Conic Complementarity IS NATURAL in 
Coulomb Models. 

  Coulomb model. 

 Most previous approaches discretize friction cone to use LCP… 
 Question 2: Can we still get convergence but not do that? 



Time stepping scheme -- original 

  A measure differential inclusion solution can be obtained by time-stepping 
(Stewart, 1998, Anitescu 2006) 

Speeds 

Forces 

Bilateral constraint 
equations 

Contact constraint 
equations 

Coulomb 3D friction 
model 

Stabilization 

 terms 

COMPLEMENTARITY! 

Reaction 
impulses 



Pause: Constraint Stabilization 

 Compared to original scheme 

 Allows fixed time steps for plastic collisions. 
 How do we know it is achieved? Infeasibility is one 

order better than accuracy (O(h^2)) 



Time Stepping -- Convex Relaxation 

  A modification (relaxation, to get convex QP with conic constraints): 

But In any case, 
converges to same 
MDI as unrelaxed 
scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small µ and/or 
small speeds, almost 
no one-step 
differences from the 
Coulomb theory) 



Pause: what does convergence mean here? 



Pause(2) : What does convergence mean 
here? 



What is physical meaning of the relaxation? 

 Origin 

 Behavior 



Further insight.  

 The key is the combination between relaxation and 
constraint stabilization. 

 If the time step is smaller than the variation in 
velocity then the gap function settles at  

 So the solution is the same as the original scheme 
for a slightly perturbed gap function….. 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone complementarity 

  Also define:  

  Then:       

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



Cone complementarity—Decomposable 
cones. 

  Here we introduced the convex cone 

  ..and its polar cone: 

CCP: 

In R^3 is i-th friction cone 

is  R 



4. Iterative methods for solving conic 
complementarity problems.  



General: The iterative method 

  Question 3: How to efficiently solve the Cone Complementarity Problem 
for large-scale systems? 

  Our method: use a fixed-point iteration 

  with matrices: 
  ..and a non-extensive 
orthogonal projection  
operator onto feasible set 

NT= 



General: The iterative method 

 ASSUMPTIONS 

 Under the above assumptions, we 
can prove THEOREMS about convergence. 

 The method produces a bounded sequence  
with an unique accumulation point. 

Always satisfied in 
multibody systems 

Use ω overrelaxation 
factor to adjust this 

Essentially free 
choice, we use 
identity blocks 



General: Theory 

 Answer 2: Simple, but first result of this nature for conic 
constraints—and HIGHLY EFFICIENT 



The projection operator is easy and separable 

   For each frictional contact constraint: 

 For each bilateral constraint, simply do nothing. 
 The complete operator: 



5. Numerical considerations 



The algorithm 

 Development of an efficient algorithm for fixed point iteration: 

   avoid temporary data, exploit sparsity. Never compute explicitly the N matrix! 

   implemented in incremental form. Compute only deltas of multipliers. 

   O(n) space requirements and   supports premature termination 

   for real-time purposes: O(n) time 



The algorithm is specialized, for minimum 
memory use! 

   



Simulating the PBR nuclear reactor 

 The PBR nuclear reactor: 
- Fourth generation design 
- Inherently safe, by Doppler 
broadening of fission cross 
section 

- Helium cooled > 1000 °C 
- Can crack water (mass 
production 
of hydrogen) 

- Continuous cycling of 360’000  
graphite spheres in a pebble 
bed 

Granular  
flow 



Simulating the PBR nuclear reactor 

 Problem of bidisperse granular 
flow with dense packing.  

 Previous attempts: DEM methods 
on supercomputers at Sandia 
Labs regularization) 

 40 seconds of simulation for 
440,000 pebbles needs 1 week 
on 64 processors dedicated 
cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

  Two millions of primal 
variables, six millions of dual 
variables 

  1 day on a Windows station… 
  But we are limited by the 2GB 

user mode limit, 64 bit port in 
progress—but linear scaling.. 

 We estimate 3CPU days, 
compare with 450 CPU days 
for an incomplete solution in 
2006 !!! 

  Answer 3: Our approach is 
efficient for large scale!! 



In addition, we can approach efficiently 
approach many engineering problems (see 
website for papers) 



Examples 

  Example: size-segregation in shaker, with thousands of steel 
spheres 

Note: solution beyond 
reach of Lemke-type  LCP 
solvers! 



Tests 

 Feasibility accuracy increases with number of iterations: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 



6. Initial experiments on graphical processing 
unit (GPU). 



New large scale computational opportunity 
Graphical Processing Unit  



IBM BlueGene/L—GPU 
comparison 

  Entry model: 1024 dual core nodes 

  5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU) 

  Dedicated OS 

  Dedicated power management solution 

  Require dedicated IT support 

  Price (2007): $1.4 million 

  Same GPU power (2008): 7K!!! 



Brick Wall Example… 

  Times reported are in seconds for one second long simulation 
  GPU: NVIDIA GeForce 8800 GTX 



Future work 

 N non symmetric, but positive semidefinite.  
 Parallelizing the algorithms: block Jacobi with Gauss 

Seidel blocks.  
 Asynchronous version of the algorithm, particularly for 

use with GPU. 
 Including a good collision model– here we are at a loss 

with rigid body theory – may need some measure of 
deformability. 

 Compare with experimental data.  



Conclusions 

 We have defined a new algorithm for complementarity 
problems with conic constraints. 

 We have shown that it can solve  very large problems 
in granular flow far faster than DEM. 

 It is the first iterative algorithm that provably converges 
for nonsmooth rigid body dynamics.  

 Its scalability is decent.  
 We have created a multithreaded implementation and 

GPU port increases computational speed by a factor of  
7-8. 
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